翻訳と辞書
Words near each other
・ Smith's Bank
・ Smith's Bible Dictionary
・ Smith Miniplane
・ Smith Mountain
・ Smith Mountain (Death Valley)
・ Smith Mountain (Taconic Mountains)
・ Smith Mountain Dam
・ Smith Mountain Lake
・ Smith Mountain Lake Airport
・ Smith Mountain Lake State Park
・ Smith Mountain Ranch Airport
・ Smith Museum of Stained Glass Windows
・ Smith New Court Securities Ltd v Scrimgeour Vickers (Asset Management) Ltd
・ Smith Newell Penfield
・ Smith Nickerson
Smith normal form
・ Smith number
・ Smith Nunatak
・ Smith Nunataks
・ Smith O'Brien's GAA
・ Smith Observatory
・ Smith Observatory and Dr. William R. Brooks House
・ Smith of Derby Group
・ Smith of Wootton Major
・ Smith Pagerie Site
・ Smith Park
・ Smith Park Architectural District
・ Smith Peak
・ Smith Peak (Tuolumne County, California)
・ Smith Peaks


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Smith normal form : ウィキペディア英語版
Smith normal form
In mathematics, the Smith normal form is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square matrices. In particular, the integers are a PID, so one can always calculate the Smith normal form of an integer matrix. The Smith normal form is very useful for working with finitely generated modules over a PID, and in particular for deducing the structure of a quotient of a free module.
==Definition==

Let ''A'' be a nonzero ''m''×''n'' matrix over a principal ideal domain ''R''. There exist invertible m \times m and n \times n-matrices ''S, T'' so that the product ''S A T'' is

\begin
\alpha_1 & 0 & 0 & & \cdots & & 0 \\
0 & \alpha_2 & 0 & & \cdots & & 0 \\
0 & 0 & \ddots & & & & 0\\
\vdots & & & \alpha_r & & & \vdots \\
& & & & 0 & & \\
& & & & & \ddots & \\
0 & & & \cdots & & & 0
\end.

and the diagonal elements \alpha_i satisfy \alpha_i \mid \alpha_\;\forall\;1 \le i < r. This is the Smith normal form of the matrix ''A''. The elements \alpha_i are unique up to multiplication by a unit and are called the ''elementary divisors'', ''invariants'', or ''invariant factors''. They can be computed (up to multiplication by a unit) as
: \alpha_i = \frac,
where d_i(A) (called ''i''-th ''determinant divisor'') equals the greatest common divisor of all i\times i minors of the matrix ''A''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Smith normal form」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.